Mplus vs Multilog in 2PL IRT
This is an example
result of IRT analysis using MPLUS and Multilog.
DATASET
1. MPLUS Syntax & Output
lsat-mplus.dat |
lsat-multilog.MLG
2. MULTILOG Syntax &
Output lsat-multilog.dat |
lsatmplus.inp
MPLUS
MPLUS SYNTAX
TITLE: Analisis Teori Respons Butir MPLUS (GRM) DATA: FILE IS lsat-mplus.dat; VARIABLE: NAMES ARE a01-a05 freq; FREQWEIGHT IS freq; MISSING ARE ALL (-9); USEVARIABLE ARE a01-a05; CATEGORICAL ARE a01-a05; ANALYSIS: ESTIMATOR IS ML; LINK IS LOGIT; MODEL: F1 BY a01-a05*; !F1 BY a01@1 a02-a05; [a01$1-a05$1*] [F1@0]; F1@1; OUTPUT: STAND; PLOT: TYPE IS PLOT1; ! Perintah Plot untuk deskriptif TYPE IS PLOT2; ! Perintah Plot untuk kurva IRT TYPE IS PLOT3; ! Perintah Plot untuk nilai theta
MPLUS OUTPUT.
MODEL RESULTS
Two-Tailed Estimate S.E. Est./S.E. P-Value
F1 BY A01 0.825 0.258 3.198 0.001 A02 0.722 0.186 3.872 0.000 A03 0.891 0.233 3.826 0.000 A04 0.688 0.185 3.718 0.000 A05 0.659 0.210 3.133 0.002
Means F1 0.000 0.000 999.000 999.000
Thresholds A01$1 -2.773 0.206 -13.482 0.000 A02$1 -0.990 0.090 -11.005 0.000 A03$1 -0.249 0.076 -3.266 0.001 A04$1 -1.285 0.099 -12.977 0.000 A05$1 -2.054 0.136 -15.148 0.000
Variances F1 1.000 0.000 999.000 999.000
IRT PARAMETERIZATION IN TWO-PARAMETER LOGISTIC METRIC WHERE THE LOGIT IS 1.7*DISCRIMINATION*(THETA - DIFFICULTY)
Item Discriminations
F1 BY A01 0.486 0.152 3.198 0.001 A02 0.425 0.110 3.872 0.000 A03 0.524 0.137 3.826 0.000 A04 0.405 0.109 3.718 0.000 A05 0.387 0.124 3.133 0.002
Means F1 0.000 0.000 0.000 1.000
Item Difficulties A01$1 -3.360 0.867 -3.875 0.000 A02$1 -1.371 0.308 -4.455 0.000 A03$1 -0.280 0.100 -2.807 0.005 A04$1 -1.868 0.435 -4.296 0.000 A05$1 -3.119 0.868 -3.595 0.000
Variances F1 1.000 0.000 0.000 1.000
MULTILOG
Syntax Analysis
MML PARAMETER ESTIMATION FOR THE 2PL MODEL, LSAT DATA >PROBLEM RANDOM, PATTERN, NITEMS=5, NGROUPS=1, NPATTERNS=32, DATA='lsat-multilog.DAT'; >TEST ALL, L2; >SAVE; >END; 2 01 11111 N (4X,5A1,F4.0)
<
h4 align
= "left" >
Syntax Analysis
OUTPUT ANALYSIS ITEM 1: 2 GRADED CATEGORIES P(#) ESTIMATE (S.E.) A 1 0.82 (0.18) B( 1) 2 -3.36 (0.62) @THETA: INFORMATION: (Theta values increase in steps of 0.2) -3.0 - -1.6 0.166 0.161 0.154 0.146 0.136 0.126 0.115 0.104 -1.4 - 0.0 0.094 0.084 0.074 0.065 0.057 0.050 0.043 0.038 0.2 - 1.6 0.032 0.028 0.024 0.021 0.018 0.015 0.013 0.011 1.8 - 3.0 0.009 0.008 0.007 0.006 0.005 0.004 0.004 OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN CATEGORY(K): 1 2 OBS. FREQ. 76 924 OBS. PROP. 0.0760 0.9240 EXP. PROP. 0.0760 0.9240
ITEM 2: 2 GRADED CATEGORIES P(#) ESTIMATE (S.E.) A 3 0.72 (0.11) B( 1) 4 -1.37 (0.21) @THETA: INFORMATION: (Theta values increase in steps of 0.2) -3.0 - -1.6 0.094 0.101 0.108 0.115 0.120 0.125 0.128 0.130 -1.4 - 0.0 0.131 0.131 0.129 0.126 0.122 0.116 0.110 0.104 0.2 - 1.6 0.097 0.089 0.082 0.075 0.068 0.061 0.055 0.049 1.8 - 3.0 0.044 0.039 0.034 0.030 0.027 0.023 0.020 OBSERVED AND EXPECTED COUNTS/PROPORTIONS IN CATEGORY(K): 1 2 OBS. FREQ. 291 709 OBS. PROP. 0.2910 0.7090 EXP. PROP. 0.2910 0.7090
< /pre >
COMPARISON
< pre>
< /dt >
< pre>
< /dt >
< pre>
< /dt >
a=Item Discriminations
b=Item Difficulties
Wahyu Widhiarso | Fakultas Psikologi UGM
http://wahyupsy.blog.ugm.ac.id
|