PROSEDUR MENGUJI DISTRIBUSI NORMAL MELALUI UJI KAI KUADRAT DI SPSS

Wahyu Widhiarso

Fakultas Psikologi UGM

Kai-Kuadrat (Chi Square)

Kai-kuadrat adalah menguji perbedaan antara data empirik (*observed*) dengan data harapan (*expected*). Teknik ini dapat dipakai untuk menguji apakah sebuah data mengikuti distribusi normal. Jika dikaitkan dengan konsep di atas, Dalam hal ini data yang kita miliki adalah data empirik (*observed*) dan data dengan distribusi normal adalah data harapan (*expected*). Hipotesis yang diajukan adalah sebagai berikut :

Ha : Terdapat perbedaan antara data *observed* dengan data *expected*

- Jika uji kai-kuadrat menghasilkan taraf signifikansi di bawah 0,05 (p<0,05) maka hipotesis tersebut ditolak. Alias, ada perbedaan data *observed* dengan data *expected*.
- Jika uji kai-kuadrat menghasilkan taraf signifikansi di atas 0,05 (p>0,05) maka hipotesis tersebut diterima. Alias, tidak ada perbedaan data *observed* dengan data *expected*. Karena tidak ada perbedaan, maka dapat dikatakan data kita (*observed*) mirip dengan data harapan (*expected*).

Dari keterangan di atas maka untuk pengujian distribusi normal hipotesis dan cara membuat kesimpulannya adalah sebagai berikut:

Ha : Terdapat perbedaan distribusi antara data empirik dengan data normal

- Jika uji kai-kuadrat menghasilkan taraf signifikansi di bawah 0,05 (p<0,05). Hipotesis diterima sehingga ada perbedaan distribusi antara data kita dengan data normal. Kesimpulanya data kita **tidak terdistribusi normal**
- Jika uji kai-kuadrat menghasilkan taraf signifikansi di atas 0,05 (p<0,05). Hipotesis ditolak sehingga tidak ada perbedaan distribusi antara data kita dengan data normal. Kesimpulanya data kita **terdistribusi normal**

Contoh Uji Kai-Kuadrat (Chi Square)

Seorang peneliti hendak menguji keseimbangan dua sisi sebuah koin, yaitu sisi A dan sisi B. Setelah dilempar sebanyak seratus kali didapatkan hasil bahwa dari 100 kali lemparan sisi A keluar sebanyak 35 kali dan sisi B sebanyak 65 kali. Idealnya, sisi koin yang seimbang adalah ketika dilempar sebanyak 100 kali, maka masing-masing sisi A dan akan muncul sebanyak 50 kali. Uji kai-kuadrat kita pakai untuk menguji apakah kedua sisi koin memiliki keseimbangan. Dari sini kita dapatkan informasi yang diwujudkan pada tabel di bawah ini.

Data	Kemunculan Sisi Koin	Jumlah	
Data Idaal /Taoritila	A = 50	100	
Data lueal/ leoritik	B = 50		
Data Observasi	A = 35	100	
Data Observasi	B =65	100	

Tabel 1. Pengujian Kai-Kuadrat terhadap Keseimbangan Koin

Uji kai-kuadrat melalui SPSS menghasilkan nilai kai-kuadrat sebesar 9.00 (p<0,05). Dengan demikian dapat disimpulkan bahwa terdapat perbedaan yang signifikan antara data ideal (*expected*) dengan data *observed*. Kesimpulannya adalah koin kita tidak seimbang. Koin kita *penceng*.

Distribusi Normal

Distribusi normal adalah distribusi yang bentuknya seperti lonceng terbalik. Misalnya distribusi kecerdasan (IQ). Jika distribusi IQ berbentuk normal maka orang yang memiliki IQ rendah dan IQ tinggi jumlahnya sedikit sedangkan orang yang memiliki IQ sedang-sedang saja jumlahnya banyak.

Gambar di atas adalah gambar kurva normal yang ideal. Dari gambar di atas maka kategori skor yang dapat dibuat adalah sebagai berikut.

Tabel 2. Kategori Skor Berdasarkan Kurva Normal

Kategori	Jumlah
Sangat Rendah	2%
Rendah	14%
Sedang	68%
Tinggi	14%
Sangat Tinggi	2%
TOTAL	100%

Kategori pada tabel 2 di atas kita pakai sebagai acuan untuk menguji apakah data kita memiliki distribusi normal atau tidak. Karena tabel di atas berisi 5 kategori, maka data kita nantinya perlu kita sederhanakan menjadi 5 kategori. Teknik pengkategorian data yang digunakan adalah pengkategorian berdasarkan persentil.

Ada 4 nilai persentil yang dipakai untuk mengkategorikan, yaitu persentil 2, 16, 84, dan 98. Kita harus mengetahui dulu berapa skor yang berada di masing-masing persentil sebelum dibuat kategori. Jangan pulang dulu, baca sub bab di bawah ini mengenai prosedurnya.

Prosedur Pegujian Distribusi Normal

Menguji distribusi normal dengan Kai-Kudarat melalui SPSS agak ribet dan berbelit-belit karena SPSS tidak memfasilitasi pada menu secara langsung. Pengujian distribusi normal memakai Kai-Kuadrat lebih lama dibanding dengan memakai Kolmogorov-Smirnov. Berikut ini adalah prosedur pengujiannya.

Tahap 1. Membuat Kriteria Kategori Skor

Kategori yang kita buat adalah kategori berdasarkan nilai persentil. Kita akan mencari nilai pada 4 jenis persentil yaitu persentil 2, 16, 84, dan 98. Ini cara mencari nilai persentil.

- Tekan Analyze Descriptive Statistics Frequency
- Masukkan data yang hendak dikategorikan
- Tekan Statistics

• Klik kotak *Percentile*. Lalu masukkan nilai persentil yang kita inginkan. Yaitu 2, 16, 84, dan 98. Jangan lupa menekan *add* setelah mengetikkan setiap angka *percentile*. Contoh ada di gambar di bawah ini. Kalau sudah, tekan continue lalu OK. Di bawah ini outputnya.

Prequencies	iable(s): SMSkirim	X OK Paste Reset Cancel Help			
Display frequency tables					
Statistics	Charts Forma	at			
Frequencies: Statistics					
Percentile Values	- Central Tendency	Continue			
Quartiles	□ <u>M</u> ean	Cancel			
- Cut points for: 10 equal groups	🗖 Me <u>d</u> ian	Help			
Percentile(s):	☐ M <u>o</u> de			Statistics	
- <u>Add</u> 2 16	<u>Г S</u> um		SMSkirim		
- Lhange 84			Ν	Valid	110
Пеноле	Vajues are group n	nidpoints		Missing	0
Dispersion	Distribution		Percentiles	2	3.00
🗖 Std. deviation 🗖 Minimum	Ske <u>w</u> ness			16	7.00
□ Variance □ Maximum	Kurtosis			84	25.00
Range S.E. mean				98	70.00

Artinya, pada datamu skor 3 merupakan batas kategori sangat rendah. Skor 7 batas antara katagori sangat rendah dan rendah. Dan seterusnya. Dari tabel di atas dapat ditemukan kriteria untuk membuat kategori berdasarkan persentil. Ini dia kriteria kategorinya.

Tabel 3. Kategori Skor Berdasarkan Persentil

Kategori	Jumlah	Kode
Sangat Rendah	<u><</u> 3	<u>1</u>
Rendah	4 - 7	2
Sedang	8 - 25	3
Tinggi	26 - 70	4
Sangat Tinggi	<u>≥</u> 71	<u>5</u>

Tahap 2. Mengubah Skor Menjadi Kode Kategori

Ceritanya, kita akan mengubah skor menjadi kode berdasarkan kriteria kategori yang kita buat. Jadi, semua skor 3 kebawah kita kode menjadi angka 1, semua skor 4 hingga 7 kita ganti menjadi kode 2 dan seterusnya. Kita, bisa mengubahnya secara manual dengan mengganti angka skor yang ada. Tapi, saya milih yang otomatis saja. Ini caranya...

- Tekan Transform Recode into Different Variables
- Pada kotak *Name* tulis *kategori* lalu tekan *change*
- Klik Old and New Values

_		
ľ	Recode into Different Va	riables
		Numeric Variable > Output Variable: SMSkirim → kode Kode Labet Change
		Old and New Values
		If (optional case selection condition)
		OK Paste Reset Cancel Help

• Sesuai kriteria pengkategorian. Klik *Range : Lowest through* lalu isi dengan angka 3 terus tekan *add.* Terus tekan *Range :* masukkan 4 *through* 7 tekan add. Masukkan semua yang ada di kriteria pengkategorian. Lihat contoh gambar di bawah. Kalau sudah tekan OK. Hasil pengkodean akan muncul di data.

Ī	Recode into Different Variables: Old and New Values				
	Old Value Value: Sustem minima	New Value Value: C System-missing C System-missing			
	System- or user-missing Range:	Old -> New: Add Lowest thru 3 -> 1 4 thru 7 -> 2			
	C Range: Lowest through	Change 8 thru 25 -> 3 26 thru 70 -> 4 Remove			
	C Range: through highest	Output variables are strings Width: 8 Convert numeric strings to numbers (15->5)			
-	C All other values	Continue Cancel Help			

Ini hasilnya...

🛗 SMS.sa	m SMS.sav - SPSS Data Editor					
File Edit	View Data	Transform Ana	lyze Graphs	Utilities Add	I-ons Window	v Help
2	a 🔍 🗠	v 🗠 🔚 🕅	約 11 正		V	
98 :						
	SMSkirim	kode	var	var	var	var
1	50	4.00				
2	70	4.00				
3	15	3.00				
4	25	3.00				
5	14	3.00				
6	5	2.00				
7	10	3.00				
_						

Tahap 3. Menguji Normalitas Distribusi Data

Tenang kawan, tahap ini tidak kalah rumitnya dengan tahap sebelumnya. Ingat pengujian Kai-Kuadrat adalah membandingkan antara data *expected* dan *observed*. Kita sudah memiliki data observednya, yaitu data kode, tapi kita belum memiliki data *expected*-nya. Berikut ini caranya.

A. Tabel dibawah ini merupakan data yang bersifat normal yang didalamnya terdapat 2% ada pada kategori sangat rendah dan 14% pada kategori rendah dan seterusnya. Nah tiap persentase tersebut kita kalikan dengan jumlah sampel kita. Misalnya sampel kita adalah 110, maka kita kalikan setiap baris persen dengan 110. Hasilnya ada di tabel.

Kategori	Persentase	N=110
Sangat Rendah	2%	110 x 2% =2
Rendah	14%	110 x 14% =15
Sedang	68%	110 x 68% =75
Tinggi	14%	110 x 14% =15
Sangat Tinggi	2%	110 x 2% =2
TOTAL	100%	110

Гabel 4. Kategori Sko	Berdasarkan Persentil
-----------------------	-----------------------

Kita mendapatkan telah nilai *expected* untuk masing-masing kategori, yaitu 2, 15, 75, 15, dan 2. Ini nanti yang kita masukkan dalam uji Kai-Kuadrat.

- B. Akhirnya analisis bisa kita mulai.
 - Tekan Analyze Non Parametric Test Chi Square.
 - Masukkan *kode* ke dalam *Test Variable List*
 - Masukkan berurutan angka expected, yaitu 2, 15, 75, 15, dan 2. Lalu tekan OK!

Ini dia hasil analisisnya.

Chi-Square Test

Kouc					
	Observed N	Expected N	Residual		
sangat rendah	5	2.0	3.0		
rendah	13	15.1	-2.1		
sedang	79	75.7	3.3		
tinggi	12	15.1	-3.1		
sangat tinggi	1	2.0	-1.0		
Total	110				

kodo

Tabel di atas menunjukkan perbandingan antara kategori *observed* dan *expected*. Subjek Pada kategori sangat rendah, untuk kurva normal, idealnya berjumlah 5 orang, akan tetapi pada data kita berisi 2 orang. Demikian juga pada kategori rendah, diharapkan ada 15 orang akan tetapi pada data kita berisi 13 orang. Dan seterusnya. *But don't worry about this. The conclusion is not inferred from this following output. This is only flowers, not the main deduction* (baca : ini hanya kembangan-kembangan aja, bukan yang utama).

Test Statistics

	kode
Chi-Square ^a	6.016
df	4
Asymp. Sig.	.198

a. 2 cells (40.0%) have expected frequencies less than
5. The minimum expected cell frequency is 2.0.

Tabel di atas menunjukkan bahwa nilai Kai-Kudrat yang dihasilkan adalah sebesar 6.02 (p>0,05). Karena taraf signifikansi menunjukkan nilai p di atas 0,05 maka dapat disimpulkan bahwa data frekuensi terdistribusi normal.

Rebat Cekap Semanten ! Semoga Bermanfaat

Please use this following format when cite.

Widhiarso, W. (2008) *Prosedur Menguji Distribusi Normal Melalui Uji Kai Kuadrat di SPSS*. Tidak Diterbitkan. Diambil pada tanggal dari http://www.widhiarso.staff.ugm.ac.id